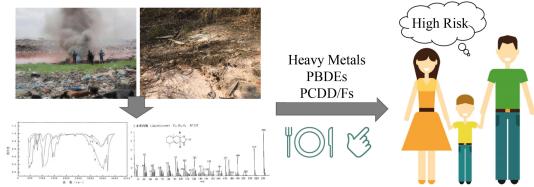


# Legacies and health risks of heavy metals, polybrominated diphenyl ethers, and polychlorinated dibenzo-dioxins/furans at e-waste recycling sites in South China


Xu Zhao<sup>#</sup>, Wei Li<sup>#</sup>, Wei Wang, Jingjing Liu, Yunjiang Yu, Yang Li, Xichao Chen, Yun Liu (✉)

State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection of the People's Republic of China, Guangzhou 510655, China

## HIGHLIGHTS

- Heavy metals and organic toxins may persist in legacy sites for a long time.
- Contaminants pose potential harms to the nearby community (HI > 1).
- PCDD/Fs had the risk of endocrine disruption and reproductive risk.
- Further intervention is needed to reduce pollution and related risks.

## GRAPHIC ABSTRACT



## ARTICLE INFO

### Article history:

Received 14 September 2022

Revised 6 December 2022

Accepted 6 December 2022

Available online 25 January 2023

### Keywords:

E-waste  
Human health risk  
Organ risk  
Heavy metal toxicity  
PBDE  
PCDD/F

## 1 Introduction

Electronic and electrical technologies have transformed our societies and interactions with the environment. Electrical and electronic equipment (EEE) is a large class of commercial “products with circuitry or electrical components with a power or battery supply” (Chen et al., 2021); this includes cell phones, laptops, washing machines, refrigerators, and many other items. EEEs are often discarded, becoming either waste of electrical and electronic equipment (WEEE) or electronic waste (e-waste). In 2019,  $5.36 \times 10^{10}$  kg—an estimated equivalent of 7.3 kg per capita—of e-waste was generated worldwide, according to the Global E-Waste Monitor 2020 (Forti et al., 2020). This amount is expected to double, reaching  $7.47 \times 10^{10}$  kg, by the end of 2030. Sites of WEEE have been termed “urban mines” owing to their high concentrations of valuable metals and metalloids

✉ Corresponding author

E-mail: liyun@scies.org

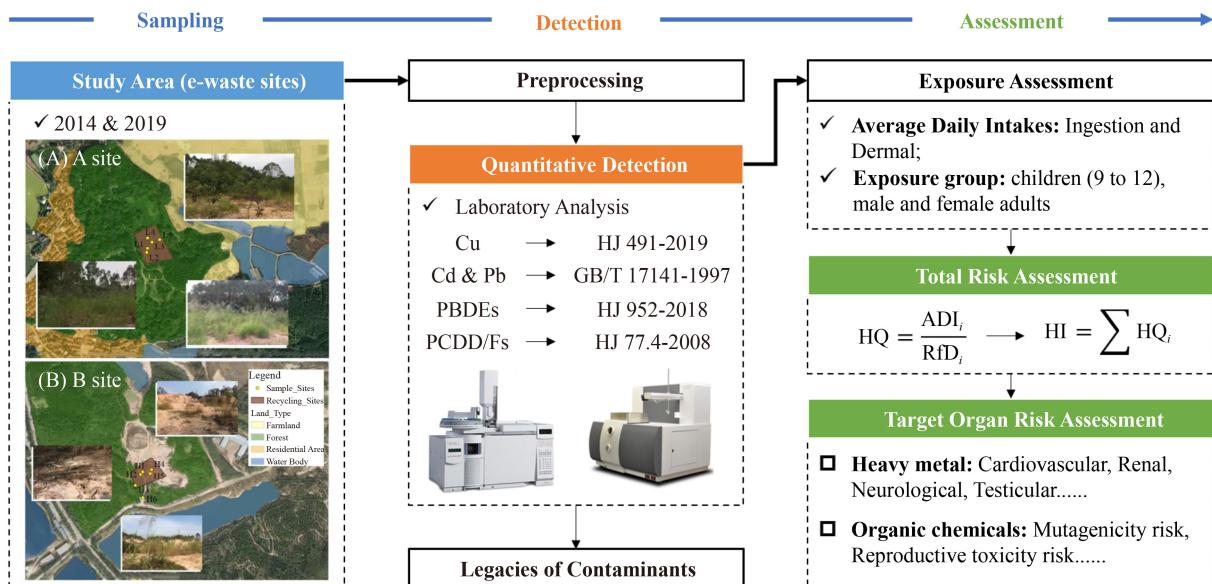
# These authors contributed equally to this work.

© Higher Education Press 2023

1 (Awasthi et al., 2016; Ackah, 2017). High percentages of  
 5 Fe, Al, and Cu can be found in raw waste materials; for  
 example, Cu (~16%), Sn (~4%), Fe (~3%), Ni (~2%), Zn  
 (~1%), and Au (~0.03%) are valuable metals in waste  
 printed circuit boards. Consequently, e-waste recycling  
 10 activities have been promoted since 1990, particularly in  
 developing countries such as China (Balde et al., 2017;  
 Forti et al., 2020).

15 Polybrominated diphenyl ethers (PBDEs) and other  
 10 organic chemicals are used as raw materials in EEE,  
 while polychlorinated dibenzo-dioxins/furans (PCDD/Fs)  
 occur as by-products following inadequate combustion.  
 Consequently, the informal recycling of e-waste causes  
 15 serious environmental contamination (Fujimori and  
 Takigami, 2014; Dos Santos et al., 2017; Liu et al., 2021).  
 An increasing number of studies have reported a wide  
 range of metal pollution levels at e-waste recycling and  
 20 disposal sites. Xue et al. (2012) detected Cu, Pb, Cr, and  
 Cd in printed circuit board automatic line workshops,  
 with Pb (1.40  $\mu\text{g}/\text{m}^3$ ) and Cu (1.22  $\mu\text{g}/\text{m}^3$ ) being the most  
 abundant metals in total suspended particles. Zinc  
 25 contamination (5200  $\mu\text{g}/\text{g}$ ) has been reported in the soils  
 of e-waste sites in Ghana, along with Cr (490  $\mu\text{g}/\text{g}$ ), Cu  
 (360  $\mu\text{g}/\text{g}$ ), and Pb (300  $\mu\text{g}/\text{g}$ ) (Moeckel et al., 2020).  
 Additionally, contamination by polychlorinated biphenyls  
 30 (PCBs), PBDEs, polycyclic aromatic hydrocarbons (PAHs), and  
 polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans  
 (PCDFs) has been widely reported from e-waste  
 recycling areas (Sepúlveda et al., 2010; Chan and Wong,  
 35 2013). The environmental impact of e-waste varies  
 among regions and is influenced by the composition and  
 treatment of e-waste, as well as environmental conditions,  
 social awareness, and policy interventions (Zhang et al.,  
 2017). For example, the availability of recycling technologies  
 40 for disassembly, upgrading, comminution, and separation  
 affects the amount of metals that can be recovered or left in the recycling process (Chan and  
 Wong, 2013).

45 There are two main pathways of human exposure to e-  
 waste contaminants at disassembly sites—ingestion and  
 dermal exposure. Ingestion exposure is the exposure of  
 people around a site through the unconscious swallowing  
 of soil particles or ingestion of contaminated food or  
 50 water. Dermal exposure is caused by soil particles sus-  
 pended in the air falling on the skin through sedimenta-  
 tion and contaminants penetrating the human body.  
 People who live, work, and play around informal e-waste  
 recycling sites experience elevated exposure to toxic  
 55 substances (Song and Li, 2014), especially workers and  
 children (Xue et al., 2012). Infants and children can be  
 exposed by ingesting indoor dust on surfaces and playing  
 with dismantled electronics, as well as via breastfeeding  
 (Song and Li, 2014). Previous studies have shown that  
 the ingestion of PCDD/Fs from dust in recycling regions  
 ranges from 10 to 32  $\mu\text{g}$  toxic equivalency (TEQ)/(kg·d),  
 exceeding the tolerable daily intake limit of 1–4  $\mu\text{g}$


1 TEQ/(kg·d). Heavy metals can also accumulate in the  
 5 soil–vegetable system. Liu et al. (2021) measured 11  
 10 types of vegetables around a historical e-waste site and  
 found higher metal accumulation in leafy and solanaceous  
 15 vegetables (lettuce and eggplant). It has been suggested  
 that exposure to toxic substances is orders of magnitude  
 20 higher in the villages surrounding e-waste sites than in  
 other areas (Ngo et al., 2021). Moreover, e-waste  
 25 recycling has been associated with increased adverse  
 30 health effects, including birth defects (Zhang et al., 2017),  
 35 development delays (Soetrisno and Delgado-Saborit,  
 40 2020), immune dysfunction (Huo et al., 2019a; 2019b),  
 45 and endocrine disruption (Grant et al., 2013). However,  
 50 limited biomonitoring data (placenta, umbilical cord  
 blood, blood and serum, hair, urine, etc.) are available on  
 the physiologic burden or daily intake of e-waste  
 55 contaminants, which hampers further restrictions on e-  
 waste recycling activities.

E-waste management infrastructure and regulations  
 were first developed in China after 2010. In the 1990s, e-  
 waste was primarily managed by families and small  
 businesses. Under inferior techniques and awareness, e-  
 waste was openly burned, washed with acid, and dumped  
 without further control (Yu et al., 2006), resulting in  
 serious heavy metal, PCDD/F, PCB, and PAH contamination  
 in e-waste regions (Zhang et al., 2017; Huang et al.,  
 2021). South China has suffered from long-term illegal e-  
 waste recycling activities (Yu et al., 2006). It is known  
 for its heavy metal recycling industries, which produce  
 1.2 t of solid waste annually. In 2013, under strict regulations  
 on e-waste recycling in Guangdong Province, China, a few cities established centralized industrial parks  
 and abolished the family-operated recycling sector to  
 reduce environmental impacts. The open burning and  
 disposal of e-waste were abolished, and advanced techniques  
 and management methods were adopted. In 2014,  
 some cities in South China initiated a restoration project  
 for abandoned e-waste sites. However, only conventional  
 restoration methods have been employed. In this study  
 (Fig. 1), we selected two e-waste sites (denoted as A and  
 B) and evaluated the levels of heavy metals, PBDEs, and  
 PCDD/Fs in the soil between 2014 and 2019. Exposures  
 to these contaminants were also calculated among  
 children (aged 9–12) and adults based on the Exposure  
 Factors Handbook of Chinese Population (Ministry of  
 Ecology and Environment, 2016), and potential hazards  
 near the two sites were evaluated using a total risk assessment  
 and target organ and endpoint risk assessments.

## 2 Materials and methods

### 2.1 Study area

The study areas (A and B) were located in South China.  
 In 2014, a preliminary site investigation was conducted.



**Fig. 1** Workflow of exploring the human health risks of heavy metals, polybrominated diphenyl ethers and polychlorinated dibenzodioxins/furans at e-waste recycling sites in South China.

Site A ( $23^{\circ}34.844'50.64''N$ ,  $113^{\circ}02'14.16''E$ ) was a dismantling and incineration site with an area of  $1002.3\text{ m}^2$ . The site was operated mainly by family-owned workshops near their respective farmlands. In 2015, under the government restoration project, severely contaminated soils were transferred to hazardous waste landfill sites, and the abandoned sites were abandoned to natural restoration, with vegetation planted in potentially contaminated areas. Site B ( $23^{\circ}31'46.56''N$ ,  $113^{\circ}03'20.46''E$ ) was an e-waste recycling and dismantling site located near a reservoir, with an estimated area of  $6000\text{ m}^2$ . Three water ponds and one residential area were observed within a  $500\text{ m}$  radius of this site. In 2019, we conducted a second investigation (Fig. 2). Site A had developed into a forest and no e-waste residue was observed at Site B, which was buried with clay and sand and sparsely vegetated by grass and shrubs. At nearby sites, water ponds, residential areas, and farmlands were identified as potentially affected areas.

## 2.2 Laboratory analyses

During our first investigation (in 2014), we collected 20 g samples of the upper (0–20 cm) and deep (20–60) soil layers at sites A and B and mixed them at a 1:1 to obtain the final samples for each site. As the representative high-concentration points differed between the sites, five and six mixed samples were collected at Site A and Site B, respectively. The collection method was modified based on the Technical Specification for Soil Environmental Monitoring (HJ/T 166-2004) of China.

During our second investigation (in 2019), a hand-held alloy analyzer (Vanta Element-S, Olympus, Japan) was

employed to rapidly determine the concentrations of metals. We then collected 20-g samples from the upper (0–20 cm) soil layers at Site A ( $N = 5$ ) and Site B ( $N = 6$ ) in areas with positive detection results. The second sampling point is shown in Fig. 2. Samples were air-dried in the laboratory for 48 h, sieved using a 10-mesh nylon sieve, and then stored in labeled plastic bags for later analysis. Our sample preparations and analyses followed the methods reported by Li et al. (2009), Zhang et al. (2017) and Ngo et al. (2021). For heavy metals, soil samples were digested with  $\text{HCl-HNO}_3\text{-HF}$  (1:1:1). Cu concentrations were determined using a flame atomic absorption spectrophotometer (AA 600, PerkinElmer, USA) (standard HJ491-2019), and Cd and Pb were measured using a graphite furnace atomic absorption spectrometer (AA 600, PerkinElmer, USA) (standard GB/T 17141-1997). Soil samples were extracted via Soxhlet extraction and purified using silica gel column chromatography to determine the concentrations of PBDEs and PCDD/Fs. Eight PBDEs (Table S1) were measured using a gas chromatography–mass spectrometer (GCMS-7890B-5977A, Agilent, USA) (standard HJ952-2018), and 17 PCDD/F congeners (Table S2) were analyzed using high-resolution gas chromatography–mass spectrometer (Trace 1310 GC/DFS-718109180/SN033 80M, ThermoFisher, USA) (standard HJ77.4-2008).

## 2.3 Exposure assessment

As there were no agricultural soils or potable water around either Site A or B, we considered the ingestion of and dermal contact with contaminated soils to be the major routes of human exposure. We calculated the



Fig. 2 Sampling locations of A (a) and B (b) e-waste sites in South China.

exposure for children (age 9–12) and adults based on the Exposure Factors Handbook of Chinese Population (Ministry of Ecology and Environment, 2016; Table 1),

which provides localized Chinese exposure parameters. The average daily intake via ingestion ( $ADI_{ing}$  (mg/(kg·d))) and dermal contact ( $ADI_{ds}$  (mg/(kg·d))) were calculated using the following equations (Eqs. (1) and (2)):

$$ADI_{ing} = \frac{C \times IR \times EF \times ED}{BW \times AT}, \quad (1)$$

$$ADI_{ds} = \frac{C \times CF \times AF \times F_{exp} \times ABS \times SA \times EV \times EF \times ED}{BW \times AT}, \quad (2)$$

where C refers to the concentration of contaminants in the soil (mg/kg), IR is the rate of ingestion of contaminated soils (mg/d), CF is the conversion factor (kg/mg), AF is the adherence factor of soil to skin (mg/cm<sup>2</sup> per event), ABS is the dimensionless dermal absorption fraction,  $F_{exp}$  is the dimensionless fraction of the exposed skin area, SA is the surface area of the skin exposed to contaminants (cm<sup>2</sup>), EV refers to the frequency of exposure events (events/d), EF is the exposure frequency (d/a), ED is the exposure duration (a), AT is the average exposure time (d), and BW refers to bodyweight (kg).

#### 2.4 Total risk assessment

We evaluated the non-carcinogenic risks posed by all studied contaminants. The hazard quotient (HQ) and hazard index (HI) were calculated using the following equations (Eqs. (3) and (4)):

$$HQ = \frac{ADI_i}{RfD_i}, \quad (3)$$

$$HI = \sum_1^i HQ, \quad (4)$$

where RfD is the oral reference dose of a contaminant  $i$  (mg/(kg·d)). An exposed child is likely to experience

Table 1 Summary of exposure factors for children aged 9–12 years and both male and female adults

| Exposure factors                  | Values                                             |                       |                       | References                                |
|-----------------------------------|----------------------------------------------------|-----------------------|-----------------------|-------------------------------------------|
|                                   | Adult (male)                                       | Adult (female)        | Children (aged 9–12)  |                                           |
| ABS                               | Pb (0.01); Cd (0.01); PBDEs (0.03); PCDD/Fs (0.10) |                       |                       | Wu et al., 2015; US EPA, 2015             |
| AF (mg/cm <sup>2</sup> per event) | 0.07                                               | 0.07                  | 0.2                   | Zhao et al., 2012                         |
| AT (d)                            | ED × 365                                           | ED × 365              | ED × 365              | Zhao et al., 2012                         |
| BW (kg)                           | 62.9                                               | 54.4                  | 23.8                  | Ministry of Ecology and Environment, 2016 |
| CF (kg/mg)                        | 1.00×10 <sup>-6</sup>                              | 1.00×10 <sup>-6</sup> | 1.00×10 <sup>-6</sup> | –                                         |
| ED (a)                            | 24                                                 | 24                    | 6                     | Zhao et al., 2012                         |
| EF (d/a)                          | 365                                                | 365                   | 365                   | Zhao et al., 2012                         |
| EV (events/d)                     | 1                                                  | 1                     | 1                     | –                                         |
| F <sub>exp</sub>                  | 0.33                                               | 0.33                  | 0.338                 | US EPA, 2015                              |
| IR (mg/d)                         | 50                                                 | 50                    | 66                    | Ministry of Ecology and Environment, 2016 |
| SA (cm <sup>2</sup> )             | 17000                                              | 15000                 | 9300                  | Ministry of Ecology and Environment, 2016 |

Notes: ABS, dermal absorption factor; AF, adherence factor (soil to skin); AT, average exposure time; BW, bodyweight; CF, conversion factor; ED, exposure duration; EF, exposure frequency; EV, exposure event frequency; F<sub>exp</sub>, fraction of exposed skin area; IR, ingestion rate; SA, surface area; PBDEs, polybrominated diphenyl ethers; PCDD/Fs, polychlorinated dibenz-p-dioxins/furans.

adverse health effects if HQ (HI) > 1. The reference doses used in this study were based on oral ingestion (Table S3). The RfDs for each target substance were as follows: Pb = 0.00015 mg/(kg·d), Cu = 0.003 mg/(kg·d), Cd = 0.0005 mg/(kg·d), BDE-47 = 0.0001 mg/(kg·d), BDE-99 = 0.0001 mg/(kg·d), BDE-153 = 0.002 mg/(kg·d), BDE-209 = 0.007 mg/(kg·d), and PCDD/Fs =  $7 \times 10^{-10}$  mg/(kg·d) (Table S3).

## 2.5 Target organ and endpoint risk assessments

The target organ toxicity dose (TTD) model proposed by the Agency for Toxic Substances and Disease Registry (ATSDR, USA) was used for target organ risk assessments of heavy metal mixtures. The TTD method represents an improvement over traditional hazard indices. By exploring the target organ toxicity of a mixture, collecting the critical thresholds for the effects of contaminants on target organs, and calculating the corresponding risks posed to target organs, the risk of mixed pollutants can be more accurately reflected. TTD is determined from toxicological data and should be based on the highest no-observed-adverse-effect level (NOAEL) that does not exceed the lowest-observed-adverse-effect level (LOAEL) for the specified endpoint. The main target organs of heavy metals include the nervous system, kidneys, cardiovascular system, blood and liver. The hazard indices of different target organs (HI<sub>organ</sub>) are calculated as follows (Eq. (5)):

$$HI_{organ} = \sum_0^i \frac{E_i}{TTD_i}, \quad (5)$$

where HI<sub>organ</sub> is the hazard index of different target

organs (nerve, kidney, cardiovascular, blood, testis, or liver), E<sub>i</sub> is the exposure of the *i*<sup>th</sup> heavy metal and TTD<sub>i</sub> is the target organ toxicity dose of the *i*<sup>th</sup> heavy metal.

Target endpoint risk assessments were conducted for organic contaminants using extrapolated values for specific toxicological endpoints. Similarly, the highest NOAEL value that did not exceed the LOAEL of a specific endpoint was selected as the basis for extrapolation and 100 was selected as the uncertainty factor (UF) of the extrapolation. Toxicity thresholds were derived from the PubChem (NIH) and QSARToolBox (OECD and ECHA) databases, and the minimum value among all data was selected for evaluation. The main toxicological endpoints of the selected organic pollutants included acute toxicity, mutagenicity, reproductive toxicity, carcinogenicity, and repeated-dose toxicity. The calculation of risk quotient was Eqs. (3) and (4) in Section 2.4.

## 3 Results and discussion

### 3.1 Contaminant legacies

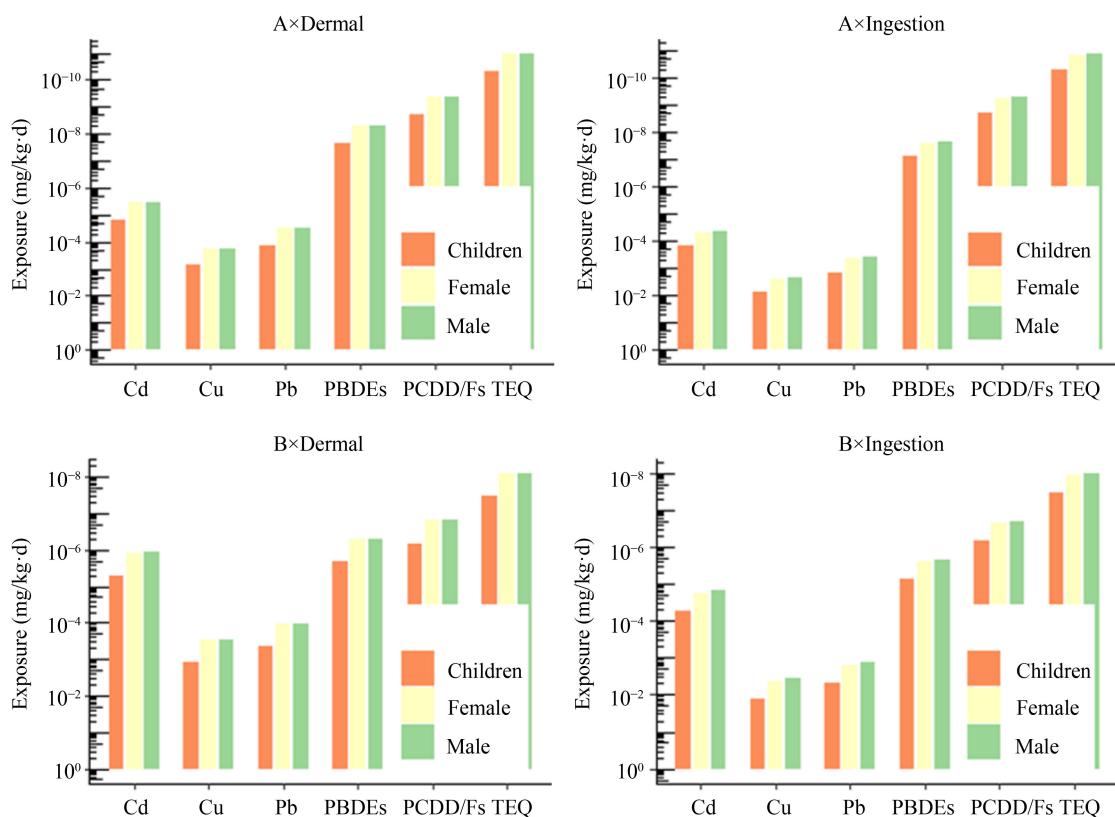
Our study provides new insights into the legacies of raw material pollution, including those of heavy metals and PBDEs, caused by the informal dismantling of electronics (Table 2). In 2014, we detected averages of 5.5 mg/kg of Cd, 1520 mg/kg of Cu, 760 mg/kg of Pb, and 424 TEQ ng/kg of PCDD/Fs at Site B. After the first investigation, private (family-owned and small business) e-waste workshops were closed in response to new regulations,

**Table 2** Concentrations of heavy metals (Cd, Cu and Pb, mg/kg), PBDEs (ng/kg), and PCDD/Fs (ng/kg) in soil samples from Site A and Site B

| Chemicals           | Site A |           |             |                 | Site B |           |             |           | 40     |  |
|---------------------|--------|-----------|-------------|-----------------|--------|-----------|-------------|-----------|--------|--|
|                     | 2014   |           | 2019: L1–L5 |                 | 2014   |           | 2019: H1–H5 |           |        |  |
|                     | Mean   | Range     | Mean        | Range           | Mean   | Range     | Mean        | Range     |        |  |
| Cd (mg/kg)          | 2.36   | 0.28–5.46 | 18.9        | 4.84–33.5       | 5.5    | 0.28–24.2 | 57.2        | 0.03–194  | 0.03   |  |
| Cu (mg/kg)          | 560    | 51.9–1450 | 4478        | 1708–6271       | 1520   | 113–8490  | 2826        | 7–9660    | 5      |  |
| Pb (mg/kg)          | 295    | 21.7–664  | 1664        | 417–2959        | 760    | 50.9–3970 | 505         | 198–847   | 120    |  |
| PBDEs (ng/kg)       | –      | –         | 2722013     | 1058072–4657745 | –      | –         | 27127       | 266–63411 | 824    |  |
| BDE-209             | –      | –         | 87.09%      | 938486–4336507  | –      | –         | 60.90%      | 169–38144 | 86.85% |  |
| BDE-100             | –      | –         | 0.58%       | 4486–30913      | –      | –         | 13.00%      | 36.3–9455 | 1.91%  |  |
| BDE-154             | –      | –         | 0.98%       | 6371–55012      | –      | –         | 9.70%       | 26.7–7347 | 1.66%  |  |
| PCDD/Fs (ng/kg)     | –      | –         | 247653      | 33828–514256    | –      | –         | 682         | 333–974   | 2328   |  |
| 1,2,3,4,6,7,8-HpCDF | –      | –         | 26.64%      | 8281–136487     | –      | –         | 11.50%      | 3.52–200  | 0.53%  |  |
| OCDF                | –      | –         | 11.08%      | 3571–57857      | –      | –         | 14.10%      | 1.5–283   | 0.30%  |  |
| 1,2,3,4,6,7,8-HpCDD | –      | –         | 12.04%      | 4192–62463      | –      | –         | 3.90%       | 2.94–54   | 0.62%  |  |
| OCDD                | –      | –         | 20.87%      | 8081–107995     | –      | –         | 54.10%      | 136–2278  | 97.83% |  |
| I-TEQ (ng/kg)       | 1382   | 677–2458  | 12640       | 1654–26855      | 424    | 68–956    | 17.6        | 1.41–47.7 | 5.13   |  |

Notes: I-TEQ, International Toxic Equivalence Quantity.

1 vegetation was planted at these former e-waste sites, and  
 5 centralized parks were created for formal recycling  
 activities. However, after five years of natural restoration,  
 the sites remained contaminated. The Cu and Cd levels at  
 10 Site B in 2019 were approximately 10 $\times$  and 2 $\times$  higher,  
 respectively, than those in 2014, and this pattern was even  
 15 more severe at site A. Moreover, we found various PBDE  
 20 contaminants in both areas, although no direct comparison  
 25 was made between 2014 and 2019 owing to a lack of  
 data. In general, contamination was more severe at Site A  
 than at Site B, possibly owing to differences between the  
 original workloads at these two sites.


15 **Zhang et al. (2017)** reported significantly reduced  
 20 PCDD/F levels (0.271 pg I-TEQ/m<sup>3</sup>) in the ambient air of  
 25 a region where informal incineration dismantling methods  
 were employed when compared to data from 2009 (8.48 pg  
 I-TEQ/m<sup>3</sup>) (**Liu et al., 2021**). However, following a 5-  
 year study period at two e-waste sites, we found the  
 opposite (**Table 2**). This may be because e-waste residues  
 were not properly handled, resulting in the continued  
 leaching of contaminants, even after workshops were  
 closed. According to the scope of the renovation project,  
 soil that was severely contaminated by e-waste was  
 excavated for treatment and vegetation was planted for  
 on-site remediation. However, it is possible that the  
 pollution source was not fully identified and therefore

1 remained. The PCDD/F levels were 1000 orders of  
 5 magnitude higher at Site A than at Site B, possibly owing  
 to different incineration volumes between the sites.

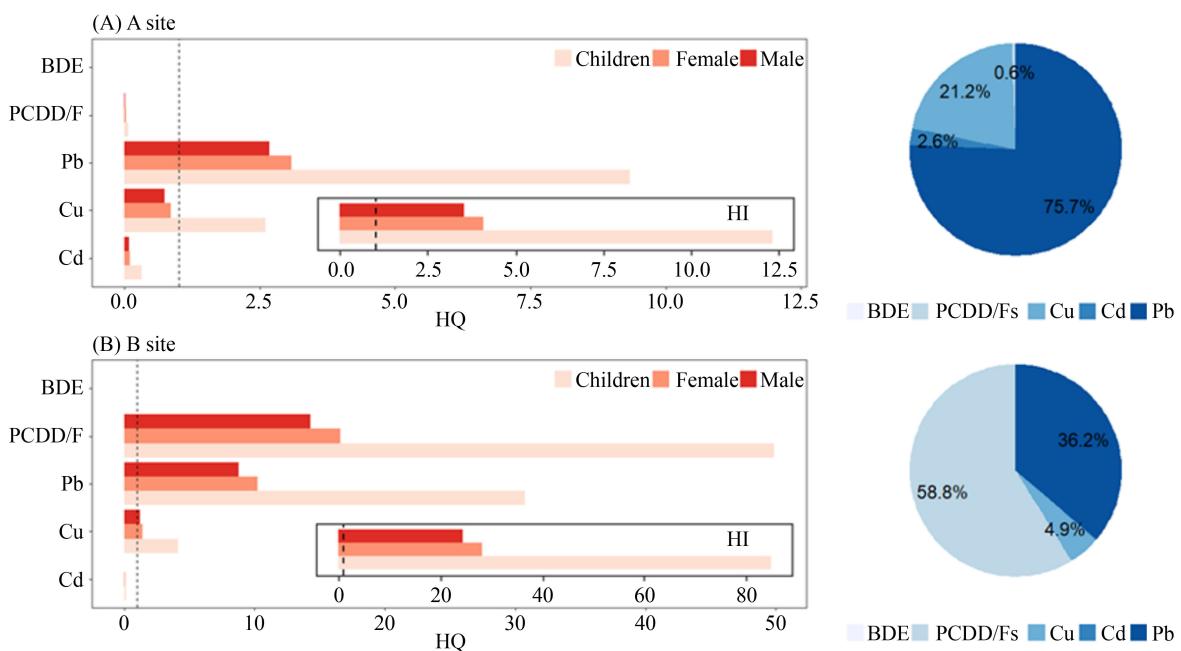
### 3.2 Human exposure

In this study, we only calculated the potential exposure to  
 10 contaminated soils from dermal contact and ingestion  
 15 using the 2019 data (**Fig. 3**). It should be noted that other  
 20 routes, including inhalation and the ingestion of contami-  
 25 nated water, food, and dust, are also likely to have  
 occurred. However, because there was no agricultural  
 land or drinking water around the sites, these other routes  
 were not considered.

15 Total heavy metal exposures at Site A through the  
 20 ingestion of soils and skin contact (dermal route) were  
 25 approximately 10 $^{-2}$  to 10 $^{-5}$  mg/(kg·d) and  $\sim$ 10 $^{-3}$  to 10 $^{-6}$   
 mg/(kg·d), respectively, and the intakes of PBDEs and  
 30 PCDD/Fs via both routes were 10 $^{-6}$  mg/(kg·d) and 10 $^{-7}$   
 mg/(kg·d). Heavy metal exposure at Site B was  $\sim$ 10 $^{-2}$  to  
 35 10 $^{-4}$  mg/(kg·d) (ingestion) and approximately 10 $^{-3}$  to  
 40 10 $^{-5}$  mg/(kg·d) (dermal route), and the intakes of PBDEs  
 and PCDD/Fs via both routes were 10 $^{-8}$  mg/(kg·d) and  
 45 10 $^{-9}$  mg/(kg·d), respectively. These findings indicate that  
 50 the heavy metal exposure through the dermal route was  
 1–2 orders of magnitude less than via ingestion, although



55 **Fig. 3** Estimated average daily intake (ADI, mg/(kg·d)) of heavy metals (Cd, Cu and Pb), PBDEs and PCDD/Fs via dermal contact  
 and ingestion of soil for children, male and female adults at A and B e-waste sites in 2019.


there was little difference between the routes for organic pollutant exposure. This is because it is difficult for intact skin to absorb heavy metals; however, it can absorb organic pollutants; these results are consistent with those of previous studies (Soetrisno and Delgado-Saborit, 2020). Additionally, the level of exposure at Site A was generally higher than that at Site B, which is also consistent with the detection results presented in Section 3.1, and may have been caused by different amounts of disassembly and incineration between the two sites. Exposure to heavy metals (Cu, Cd, and Pb) was approximately four orders of magnitude higher than exposure to PBDEs and PCDD/Fs. Cu and Pb exposures were especially high, reaching  $10^{-3}$  mg/(kg·d), which may be explained by their high concentrations in electronic products.

Estimated levels of contaminant exposure were higher in e-waste recycling sites than in areas free of e-waste, where the average intake doses of PCDD/Fs are 0.72 pg TEQ/(kg·d) for adults and 1.08 pg TEQ/(kg·d) for children (Chan et al., 2007). Likewise, people living around Site A were exposed to higher levels of contaminants, especially PBDEs and PCDD/Fs, than those near Site B. For example, PBDE exposure via ingestion among children at Site A ( $7.55 \times 10^{-6}$  mg/(kg·d)) was 100 times higher than that at Site B ( $7.52 \times 10^{-8}$  mg/kg). It is important to note that children are the population most susceptible to environmental pollution. One reason for this is that children spend more time playing on the ground, have a higher chance of ingesting contaminated soils and dust, and often put their hands into their mouths before washing. Another reason is that children have a

higher physiologic burden owing to a larger bodyweight-to-surface area ratio, resulting in higher exposure levels per bodyweight. For example, the daily intake of Pb among children (1.53 mg/(kg·d)) was four times higher than that among male (4.33 mg/(kg·d)) and female adults (4.96 mg/(kg·d)). Moreover, as childhood is a critical stage of developmental, contaminants can be especially harmful to children. An increasing number of studies have indicated an association between contaminant exposure in early life with later health consequences, including adverse developmental effects (Xue et al., 2012).

### 3.3 Total risk

We quantified non-carcinogenic health risks by using HQs, which were only calculated based on ingestion exposure (not including dermal contact) because the reference doses used in this study were based on oral data. We found a potential for health risks due to Cu, Pb, and TEQ, indicated by  $\text{HQ} > 1$  (Fig. 4). In general, compared to both male and female adults, children were at elevated health risks owing to their relatively high exposure, which is consistent with previous findings (Soetrisno and Delgado-Saborit, 2020). At both sites, heavy metals (Cu and Pb) posed potential hazards to nearby residents. It is possible that e-waste residues were not fully removed and remained in the soil. Further research and treatment are needed to reduce these risks. Additionally, PCDD/Fs posed health risks at Site A, yet they are not properly handled or are left untreated at most



**Fig. 4** Estimated hazard quotients for heavy metals (Cd, Cu and Pb), PBDEs and PCDD/Fs via ingestion of soil for children, male and female adults at A and B e-waste sites.

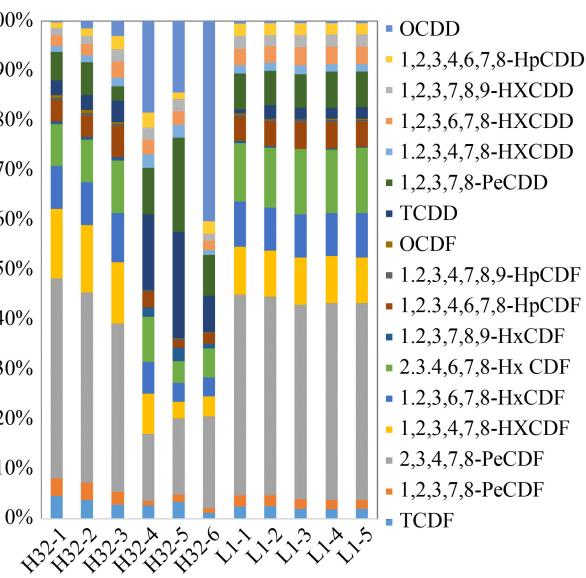
1 abandoned e-waste sites. The legacies of these contaminants may pose risks to surrounding neighborhoods without notification and awareness. Interventions are needed before adverse health effects occur.

5 We examined the PCDD/Fs that contributed the most to overall health risk among the 17 detected at Site A and Site B (Fig. 5). Among them, 2,3,4,7,8-PeCDF accounted for ~13.43%–40.26% of the risk at each site owing to its high toxicity, despite relatively low concentrations. This is consistent with the results of Hu et al. (2009) and indicates that concentrations alone can not be used to evaluate the risks posed by PCDD/Fs; rather, the contribution of the corresponding toxic equivalent should be considered. Additionally, because e-waste in South

10 China is incinerated, the impacts on the atmospheric environment are also particularly large (Xiao et al., 2014), which may be due to the easier evaporation of 2,3,4,7,8-PeCDF, resulting in more of it staying in the atmosphere.

15

#### 20 3.4 Risk to target organs and endpoints


25 We performed further risk assessments for target organs and endpoints for compounds with an overall HI > 1. At Site B, only Pb posed a risk to the entire population, and Cd had the risk of exposure to children. After further calculations, we found that the target organ and specific endpoint risks of Site B were all less than 1; therefore, we focused on Site A. The target organ risk assessment of the

30 TTD model was used to assess heavy metals. The target organs for Pb to produce effects were the nervous system, kidneys, blood, cardiovascular system, and testis (Hana and Moi, 2018), for which the TTD values were 0.1, 0.34, 0.1, 0.1, and 0.4 mg/(kg·d), respectively. The TDD values for the target organs of Cd production (Hana and Moi,

35

2018) were  $2 \times 10^{-4}$  mg/(kg·d) (nervous system),  $1 \times 10^{-4}$  mg/(kg·d) (kidneys),  $8 \times 10^{-4}$  mg/(kg·d) (blood), and  $3 \times 10^{-3}$  mg/(kg·d) (testis). The target organs of Cu were the blood and liver (Hana and Moi, 2018), for which the TTD values were 0.3 and 0.14 mg/(kg·d), respectively. Blood was the common target organ of all three heavy metals. Considering the additive effects of heavy metals in all target organs, we found that there was little risk independently imposed by Pb, Cu, and Cd on the nervous system (HI = 0.34), kidneys (HI = 0.59), cardiovascular system (HI = 0.05), blood (HI = 0.16), testis (HI = 0.03), or liver (HI = 0.10). However, the superimposed HI value of the toxic effects was 1.27, meaning that the heavy metals pose a collective health risk.

25 The target endpoint risk of PCDD/Fs was calculated from exposure to TEQ/Tetrachlorodibenzodioxin (TCDD) and the RfD of each toxicity endpoint of TCDD. Toxicity thresholds were derived from the PubChem and QSAR-ToolBox databases and the minimum value among all data was selected for evaluation, of which the lethal dose 50 (LD<sub>50</sub>) of acute toxicity was  $7 \times 10^{-5}$  mg/kg, the no-observable-effect level (NOEL) for repeated-dose toxicity was  $4.5 \times 10^{-3}$  mg/kg, the tumorigenic dose rate 50 (TD<sub>50</sub>) for carcinogenicity was  $1.6 \times 10^{-4}$  mg/kg, the NOEL for endocrine disruption was  $7.5 \times 10^{-6}$  mg/kg, and the NOEL of reproductive toxicity was  $1.6 \times 10^{-6}$  mg/kg. An uncertainty factor (UF) = 100 was selected and the RfD of the corresponding endpoint was obtained by extrapolation. From the final risk (Table 3), it can be seen that exposure to this concentration of PCDD/Fs causes endocrine disruption in people of all ages and sexes, but especially in children (HI up to 3.54) who are also at risk of reproductive toxicity. This explains why children are a high-risk group that requires special attention and consideration.



55 Fig. 5 Toxicity equivalent contribution ratio of 17 PCDD/Fs.

## 4 Conclusions

40 Informal e-waste activities can cause environmental contamination and potential health risks to nearby populations. This study involved 5-year site monitoring and the detection legacy of heavy metals (Cd, Cu, and Pb), PBDEs, and PCDD/Fs at two “restored” e-waste

45

Table 3 Risk of PCDD/Fs in male and female adults, and in children aged 9–12 for each endpoint

| Endpoint               | Risk (HI)    |                |                      |
|------------------------|--------------|----------------|----------------------|
|                        | Adult (male) | Adult (female) | Children (aged 9–12) |
| Acute toxicity         | 0.14         | 0.17           | 0.38                 |
| Repeated-dose toxicity | 0.00         | 0.00           | 0.00                 |
| Carcinogenicity        | 0.06         | 0.07           | 0.17                 |
| Endocrine disruption   | 1.34         | 1.55           | 3.54                 |
| Reproductive toxicity  | 0.63         | 0.73           | 1.66                 |

1 sites. The concentrations and detection rates of heavy  
5 metals and PCDD/Fs were high, indicating that without proper restoration, contaminants can persist over long periods in soils, even when pollution activities have stopped.

10 Numerous studies have reported on the physiologic burdens of different contaminants in human specimens. It has been suggested that PCDD/F and PCB levels in hair, milk, and cord whole blood among people living around e-waste recycling sites are higher than those in reference sites. However, it should be noted that biomonitoring data only reflect the combined or total exposure. Further research on exposure pathways should be conducted to control and reduce physiologic burdens in these areas. Children are exposed to higher levels of contaminants via dermal contact with and the ingestion of contaminated soils than adults, which is especially concerning because children are more susceptible to environmental hazards.

15 Lead, Cu, and PCDD/Fs are more likely to have adverse health outcomes than other contaminants recorded at Site A or Site B, as indicated by  $HQ > 1$ . Our study indicates the potential for health risks ( $HI > 1$ ) at both sites. Notably, the HQs in this study were calculated from external exposure and likely represent conservative estimates. Contaminants entering the human body may not be fully absorbed and may reach a target organ. With normal renal function, it is likely that they will be eliminated from urine. Abundant biomonitoring data on human placentas, blood, serum, and breast milk are available for internal exposure. These data can be used to quantify and compare health risks. Nevertheless, more studies on the mode(s) of action, adverse outcome pathways, and toxicity are needed to quantify the dose-response relationship and to inform environmental management practices.

20 Further attention should be paid to the stacked organ risk of heavy metal mixtures ( $HI = 1.27$ ). Exposure to high concentrations of/highly toxic PCDD/Fs may cause endocrine disruption in the entire population, especially in children ( $HI = 3.54$ ), who are at very high risk, including of reproductive toxicity ( $HI = 1.66$ ). These results are consistent with those of previous studies that have shown that children are at greater risk than adults for adverse health effects due to contaminant exposure. Interventions are needed to control and reduce contamination and the associated health risks in e-waste-affected regions.

25 **Acknowledgements** This work was supported by the National Key R&D Program of China (Nos. 2019YFC1805504 and 2019YFC180119).

30 **Electronic Supplementary Material** Supplementary material is available in the online version of this article at <https://doi.org/10.1007/s11783-023-1679-z> and is accessible for authorized users.

## 35 50 55 References

Ackah M (2017). Informal E-waste recycling in developing countries: review of metal(loid)s pollution, environmental impacts and transport pathways. *Environmental Science and Pollution Research International*, 24(31): 24092–24101

Awasthi A K, Zeng X L, Li J H (2016). Environmental pollution of electronic waste recycling in India: a critical review. *Environmental Pollution*, 211: 259–270

10 Balde C P, Forti V, Gray V, Kuehr R, Stegmann P (2017). The global e-waste monitor 2017: Quantities, flows and resources. Bonn: United Nations University; Geneva: International Telecommunication Union; Vienna: International Solid Waste Association

15 Chan J K, Wong M H (2013). A review of environmental fate, body burdens, and human health risk assessment of PCDD/Fs at two typical electronic waste recycling sites in China. *Science of the Total Environment*, 463–464: 1111–1123

20 Chan J K Y, Xing G H, Xu Y, Liang Y, Chen L X, Wu S C, Wong C K C, Leung C K M, Wong M H (2007). Body loadings and health risk assessment of polychlorinated dibenz-p-dioxins and dibenzofurans at an intensive electronic waste recycling site in China. *Environmental Science & Technology*, 41(22): 7668–7674

25 Chen F, Zhang Q, Ma J, Zhu Q L, Wang Y F, Liang H G (2021). Effective remediation of organic-metal co-contaminated soil by enhanced electrokinetic-bioremediation process. *Frontiers of Environmental Science & Engineering*, 15(6): 113

30 Dos Santos F R, De Almeida E, Kemerich P D D, Melquiades F L (2017). Evaluation of metal release from battery and electronic components in soil using SR-TXRF and EDXRF. *X-Ray Spectrometry*, 46(6): 512–521

35 Forti V, Baldé P C, Kuehr R, Bel G (2020). The global e-waste monitor 2020: Quantities, flows and the circular economy potential. Bonn: United Nations University; Geneva: United Nations Institute for Training and Research, International Telecommunication Union; Rotterdam: International Solid Waste Association

40 Fujimori T, Takigami H (2014). Pollution distribution of heavy metals in surface soil at an informal electronic-waste recycling site. *Environmental Geochemistry and Health*, 36(1): 159–168

45 Grant K, Goldizen F C, Sly P D, Brune M N, Neira M, van den Berg M, Norman R E (2013). Health consequences of exposure to e-waste: a systematic review. *Lancet. Global Health*, 1(6): e350–e361

Hana P, Moi M (2018). Guidance Manual for the Assessment of Joint Toxic Action of Chemical Mixtures. North Syracuse: U.S. Agency for Toxic Substances and Disease Registry

50 Hu M T, Chen S J, Huang K L, Lin Y C, Chang-Chien G P, Tsai J H (2009). Characterization of polychlorinated dibenz-p-dioxin/dibenzofuran emissions from joss paper burned in a furnace with air pollution control devices. *Science of the Total Environment*, 407(10): 3290–3294

55 Huang C, Tang Z, Xi N, Tan W, Guo W, Wu W, Ma C (2021). Environmental effects and risk control of antibiotic resistance genes in the organic solid waste aerobic composting system: a review. *Frontiers of Environmental Science & Engineering*, 2021, 15(6): 127

Huo X, Dai Y F, Yang T, Zhang Y, Li M H, Xu X J (2019a). Decreased erythrocyte CD44 and CD58 expression link e-waste Pb

1 toxicity to changes in erythrocyte immunity in preschool children. Science of the Total Environment, 664: 690–697

5 Huo X, Wu Y S, Xu L, Zeng X, Qin Q L, Xu X J (2019b). Maternal urinary metabolites of PAHs and its association with adverse birth outcomes in an intensive e-waste recycling area. Environmental Pollution, 245: 453–461

10 Li J, Lei Z, Wu Y, Liu Y, Zhou P, Wen S, Liu J, Zhao Y, Li X (2009). A national survey of polychlorinated dioxins, furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) in human milk in China. Chemosphere, 75(9): 1236–1242

15 Liu X M, Gu S B, Yang S Y, Deng J S, Xu J M (2021). Heavy metals in soil-vegetable system around E-waste site and the health risk assessment. Science of the Total Environment, 779: 146438

Ministry of Ecology and Environment (2016). Exposure Factors Handbook of Chinese Population, Children (6–17 years). Beijing: China Environmental Press (in Chinese)

20 Moeckel C, Breivik K, Nost T H, Sankoh A, Jones K C, Sweetman A (2020). Soil pollution at a major West African e-waste recycling site: contamination pathways and implications for potential mitigation strategies. Environment International, 137: 105563

Ngo H T T, Watchalayann P, Nguyen D B, Doan H N, Li L (2021). Environmental health risk assessment of heavy metal exposure among children living in an informal e-waste processing village in Viet Nam. Science of the Total Environment, 763: 142982

25 Sepúlveda A, Schluep M, Renaud F G, Streicher M, Kuehr R, Hagelüken C, Gerecke A C (2010). A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipments during recycling: examples from China and India. Environmental Impact Assessment Review, 30(1): 28–41

30 Soetrisno F N, Delgado-Saborit J M (2020). Chronic exposure to heavy metals from informal e-waste recycling plants and children's attention, executive function and academic performance. Science of the Total Environment, 717: 137099

35

40

45

50

55

1 Song Q B, Li J H (2014). A systematic review of the human body burden of e-waste exposure in China. Environment International, 68: 82–93

5 US EPA (2015). Human health evaluation manual, supplemental guidance: update of standard default exposure factors. Washington DC: USEPA

10 Wu X M, Deborah H B, Rebecca E M, Andreas S, Richard S J, Daniel J T, Nicolle S T, Matthew S C, Maribel C, Walter W, Irva H P (2015). Polybrominated diphenyl ether serum concentrations in a Californian population of children, their parents, and older adults: an exposure assessment study. Environmental Health A Global Access Science Source, 14: 23–33

15 Xiao X, Hu J F, Chen P, Chen D Y, Huang W L, Peng P A, Ren M (2014). Spatial and temporal variation, source profile, and formation mechanisms of PCDD/Fs in the atmosphere of an e-waste recycling area, South China. Environmental Toxicology and Chemistry, 33(3): 500–507

20 Xue M Q, Yang Y C, Ruan J J, Xu Z M (2012). Assessment of noise and heavy metals (Cr, Cu, Cd, Pb) in the ambience of the production line for recycling waste printed circuit boards. Environmental Science & Technology, 46(1): 494–499

25 Yu L P, Mai B X, Meng X Z, Bi X H, Sheng G Y, Fu J M, Peng P (2006). Particle-bound polychlorinated dibenzo-p-dioxins and dibenzofurans in the atmosphere of Guangzhou, China. Atmospheric Environment, 40(1): 96–108

Zhang M W, Feng G X, Yin W H, Xie B, Ren M Z, Xu Z C, Zhang S K, Cai Z W (2017). Airborne PCDD/Fs in two e-waste recycling regions after stricter environmental regulations. Journal of Environmental Sciences-China, 62: 3–10 (in Chinese)

Zhao X G, Huang N, Duan X L, Wang B B, Cao S Z, Mu J, Zhang J L (2012). Dermal exposure factors in environmental health risk assessment. Journal of Environmental Health, 29(2): 124–126 (in Chinese)

30

35

40

45

50

55