
Environmental Pollution 337 (2023) 122605

Available online 22 September 2023
0269-7491/© 2023 Elsevier Ltd. All rights reserved.

Sub-acute toxicity of the herbicide glufosinate-ammonium exposure in 
adult red swamp crayfish (Procambarus clarkii)☆ 

Yang Zhang a,1, Yao Dang b,1, Fucheng Pei a, Yongchao Yuan a, Junfa Yuan a,c, Zemao Gu a,c, 
Jianghua Wang a,* 

a College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China 
b State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of 
Ecology and Environment, Guangzhou, 510655, China 
c Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China   

A R T I C L E  I N F O   

Keywords: 
Glufosinate-ammonium(GLA) 
Procambarus clarkii 
Oxidative stress 
Nonspecific immunity 
Biotransformation enzymes 

A B S T R A C T   

Glufosinateammonium (GLA) is one of the most widely used agricultural herbicides. It is frequently detected in 
surface waters near farmland and may pose a risk to non-target aquatic species. This study aimed to explore the 
toxicity of subacute GLA exposure in crayfish. Adult red swamp crayfish were exposed to GLA (0, 1, 10, and 100 
mg/L) for 21 days. Bioaccumulation, oxidative stress, nonspecific immunity, and the expression of genes 
encoding xenobiotic detoxification-related enzymes were examined. The results showed GLA accumulation and 
hepatopancreatic histopathological changes (dilation of hepatic tubules and vacuolation of hepatocytes) in the 
exposed crayfish. GLA exposure induced ROS production, inhibited glutathione expression, and catalase activity 
in the crayfish hepatopancreas, as well as inhibited immunoenzyme expression (acid phosphatase, alkaline 
phosphatase, and lysozyme) in the hemolymph. In addition, the total hemocyte number decreased, and the 
proportion of hemocyte subsets changed significantly. Superoxide dismutase first increased and then decreased 
with increasing GLA dosage. GLA promoted the expression of biotransformation enzymes (cypb5, gst) in the 
hepatopancreas. Our results suggest that subacute GLA exposure caused structural damage to the hep-
atopancreatic tissue and decreased antioxidant capacity and non-specific immunity in crayfish. These findings 
provide insight into the toxicity of herbicides on non-target organisms.   

1. Introduction 

Glufosinateammonium (GLA), a chiral member of the organophos-
phorus family (Peltzer et al., 2013), is widely used around the world as a 
broad-spectrum herbicide (Calas et al., 2008). Glufosinate is comprises 
of L- and D-stereoisomers, and the commercial product is a racemic 
mixture with ammonium salt (Zhang et al., 2014). Because of its high 
aqueous solubility (>500 g/L), foliar sprays and surface runoff allow 
GLA to contaminate surrounding freshwater bodies (Meng et al., 2022). 
GLA has a long half-life in natural water, so it is ubiquitous in surface 
waters near farmland(Jia et al., 2019). By contrast, it is rarely detected 
in soils due to rapid degradation by soil microorganisms (Pelosi et al., 
2022). In northern Italy, the annual average concentration of GLA in the 
river Musoncello (0.72 μg/L) and Teva (0.42 μg/L) exceeded the upper 

tolerable limit for Europe in river water (0.1 μg/L) for pesticides (Masiol 
et al., 2018). Similarly, the maximum observed GLA concentrations in 
China’s agricultural surface waters sampled in summer and autumn was 
13.15 μg/L (Geng et al., 2021). Most field investigations have demon-
strated that average surface water GLA concentrations are lower than 
the observed concentrations of glyphosate (Masiol et al., 2018; Geng 
et al., 2021). However, compared with glyphosate, the concentration of 
GLA (0.63 μg/L) was higher in water samples collected from banana 
gardens in Hainan Province, China (He et al., 2019). The measured 
environmental concentrations for glufosinate in the aquatic system are 
usually far lower than the expected environmental concentration (EEC) 
of this compound (1 mg/L) in Canada (Faber et al., 1998). Given the 
increased utilization of GLA due to the global ban on paraquat and 
glyphosate, the contamination of surface water by GLA residues and the 
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risk to aquatic life has raised significant concerns. 
Although GLA is considered a relatively safe product when used 

properly (Ebert et al., 1990; Wibawa et al., 2009; Takano and Dayan, 
2020), significant toxic effects on non-target organisms have been 
established. GLA is an irreversible glutamine synthetase (GS) inhibitor, 
and its herbicide activity depends on the subsequent ammonium accu-
mulation and oxidative burst of reactive oxygen species (ROS) (Takano 
and Dayan, 2020). However, GS is a ubiquitously conserved enzyme that 
catalyzes the transformation of glutamate to glutamine in the vertebrate 
nervous system (Bak et al., 2006). Inhibition of GS activity leads to the 
accumulation of glutamate, the major excitatory brain neurotransmitter, 
which causes neurotoxicity (Lantz et al., 2014). Despite the lack of 
clarity surrounding the mechanisms of GLA toxicity in humans, acute 
high-dose exposure to GLA has been reported to cause convulsions, 
memory loss, and hippocampal pathology (Mao et al., 2012; Park et al., 
2013). After three weekly intraperitoneal GLA injections, increased GS 
activity and mild learning impairment were found in mice (Calas et al., 
2008). By contrast, decreased GS activity was reported in Wistar rats 
after feeding a diet with GLA for 28 days (Hack et al., 1994). Different 
durations of exposure, concentration or routes and types of exposure 
lead to different GS responses. Male reproductive and developmental 
toxicity have been reported in mammals exposed to GLA (Ma et al., 
2021), perhaps due to sperm histone modification (Ma et al., 2022). 
Aquatic animals exposed to GLA (2.5 mg/L) exhibit significant 
morphological abnormalities during early development, suggesting GLA 
is teratogenic in amphibians (Boccioni et al., 2022). Tadpoles exposed to 
GLA might suffer oxidative stress, hormonal disturbance (T4), and DNA 
damage. In zebrafish, for example, GLA causes spinal deformities, yolk 
sac edemas, and embryo mortality (Xiong et al., 2019). In reptiles, GLA 
induces hepatotoxicity and reproductive toxicity in male lizards via 
oxidative damage and disruption of the hypothal-
amic–pituitary–gonadal axis (Zhang et al., 2019a). 

Most studies focus on GLA toxicity in humans and vertebrates, and 
few invertebrate studies have been reported. Among the few in-
vestigations in arthropods, GLA had a significant, short-term effect on 
the predatory activity of Pardosa agrestis spiders (Niedobová et al., 2019), 
and it caused larval and nymph death in Orius strigicollis Poppius and 
Harmonia axyridis (Pallas) via direct larvicidal and nymphicidal action 
(Ahn et al., 2001). To fully understand the toxic effects of GLA, it is 
necessary to test more aquatic species. The red swamp crayfish (Pro-
cambarus clarkii) has become one of China’s most important cultured 
aquatic animals due to its high survival rate and reproductive perfor-
mance, rich nutrition, and delicious taste (Tan et al., 2017). It is an 
attractive freshwater model organism for toxicology studies because of 
its wide distribution, high fecundity, and tendency to accumulate pol-
lutants in water (Brittle et al., 2016; Velisek et al., 2013). Due to the cost 
and time, herbicides remain the preferred weed management method in 
integrated rice–aquatic animal systems (Edwards and Hannah, 2014). 
Promoting this farming system and using GLA has made contamination 
of agricultural fields and nearby water sources inevitable (Liu et al., 
2020). Crayfish are raised in rice fields and trenches in rice–crayfish 
systems (Cao et al., 2017; Lin et al., 2021) and are directly exposed to 
GLA residues in the surrounding environment, but there have been no 
studies of the potential toxicological effects of GLA on crayfish. 

This study aimed to determine whether subacute exposure to GLA 
would induce toxicity in adult red swamp crayfish and to characterize 
the role of oxidative stress and the nonspecific immunity response in 
toxicity. A range of concentrations based on the measured 96-h median 
lethal concentration (LC50) were applied over a 21-day exposure (0, 1, 
10, and 100 mg/L). The results of this study will provide an important 
foundation for evaluating the ecotoxicology and risk of GLA. 

2. Materials and methods 

2.1. Crayfish maintenance 

Red swamp crayfish (weight 26.82 ± 5.24 g, length 90.42 ± 7.97 
mm) were purchased from an aquaculture farm in Wuhan, China. All 
crayfish were temporarily placed in glass aquariums for two weeks to 
acclimate before the experiment. Each tank was filled with aerated and 
dechlorinated tap water, which was maintained at pH 7.75–8.12, total 
ammonia–nitrogen 0.052–0.067 mg/L, and 22.8◦C–24.5 ◦C. To main-
tain water quality, all exposure solutions were renewed daily. Each tank 
was equipped with a polyvinyl chloride pipe (7.5 cm × 25 cm) for 
shelter. The crayfish were fed twice a day using commercial feed. 

2.2. Glufosinate ammonium exposure 

An acute toxicity assay was performed to determine the 96-h median 
lethal concentration (LC50) of GLA. After two weeks of maintenance, 180 
crayfish were randomly selected and divided into 18 chambers. The 
concentrations for acute exposure were 0, 250, 500, 1000, 1500, and 
2000 mg/L. Each treatment group comprised three parallel chambers of 
10 crayfish. Dead crayfish were counted and removed every 12 h. 

The gradient concentration of 21-day toxicity test was set according 
to the 96-h LC50 obtained from the acute toxicity. 120 animals in twelve 
chambers with a water control and three nominal GLA concentrations 
(1, 10, and 100 mg/L), corresponding to 1/1000, 1/100, and 1/10 of the 
96-h LC50. Three replicates of 10 animals were assigned at each con-
centration of GLA and control. Crayfish were maintained in the same 
conditions as they were during acclimatization. 

After 21 days, three crayfish were selected randomly from each tank 
for hemolymph collection, assessments of GLA and histological analysis. 
Another three crayfish were used for biochemical analysis, and the 
remaining crayfish were used for gene expression. Crayfish in molting 
cycles did not undergo subsequent experiments. To ensure an adequate 
sample size and eliminate individual differences, the tissues of three 
random crayfish in each tank were combined into one sample for 
quantification of GLA and biochemical analysis. 

2.3. Quantification of GLA in crayfish hepatopancreas 

The hepatopancreas samples were centrifuged, and the supernatant 
was collected for analysis by liquid-mass spectrometry (LC-MS). Samples 
(1 g) were combined with 200 μL of internal standard (1 mg/kg) in a 50- 
mL centrifuge tube, and then mixed with 10 mL of 5% borate and 5 mL of 
methylene chloride. The supernatant was extracted by ultrasound and 
purified by column centrifugation with an EclipsePlus C18 column at an 
average velocity of 0.4 mL/min. 

2.4. Histological analysis 

Three hepatopancreas samples were randomly selected from each 
tank, then fixed in paraformaldehyde, dehydrated in ethanol, embedded 
in paraffin wax, sectioned (5 μm), and stained with hematoxylin and 
eosin. The sections were observed by light microscopy and reviewed by 
at least two independent, blinded graders (Nikon H600L Microscope, 
Japan). Histologic injury was quantified as described elsewhere 
(Table S1) (Corbett et al., 2015). 

2.5. Oxidative stress 

Commercial kits (Jiancheng Bioengineering Institute, Nanjing, 
China) were used to measure indicators of oxidative stress (SOD, CAT, 
MDA, and GSH) in the hepatopancreas. Total protein was measured by 
Bradford assay (absorbance at 595 nm) against bovine serum albumin as 
a reference. SOD, CAT, MDA, and GSH were normalized to the total 
protein content. ROS concentrations in the hepatopancreas were 
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determined using a kit (Jiancheng Bioengineering Institute, Nanjing, 
China). Detailed protocols are provided in the Supporting Information 
(S1). 

2.6. Immune-related enzyme analysis 

Hemolymph samples were extracted and fixed with anticoagulant 
solution (1:1), then centrifuged (3000×g, 15 min, 4 ◦C), and the su-
pernatants were assayed for enzyme activity. Serum activities of AKP 
(alkaline phosphatase), LZM (lysozyme), and ACP (acid phosphatase) 
were measured with commercial kits (Jiancheng Bioengineering Insti-
tute, China). Detailed methods for measuring enzyme activity are 
described elsewhere and in the Supporting Information (S2). 

2.7. Hemocyte analysis 

Hemocytes were stained with Wright–Giemsa in 100-μL hemolymph 
samples mixed with anticoagulant (1:1). The total hemocyte count was 
determined using a hemocytometer and microscopy. The differential 
hemocyte count was determined by counting the various hemocyte 
subtypes using differential interference contrast microscopy: (1) small 
hyalinocytes without cytoplasmic granules; (2) larger semigranulocytes 
with low-density cytoplasmic granules; (3) granulocytes with high- 
density cytoplasmic granules (Dolar et al., 2021). 

2.8. Quantitative real-time polymerase chain reaction (q-PCR)assay 

Hepatopancreas samples from each treatment group were extracted 
and stored at −80 ◦C. Total RNA was extracted, purified, and quantified, 
followed by first-strand cDNA synthesis (Takara, Dalian, China). Real- 
time PCR was performed with an iQ5 Multicolor Real-Time PCR 
Detection System (Bio-Rad Laboratories, CA, USA) using primers 
designed with Primer 3 (http://bioinfo.ut.ee) and dehydrogenase 
(gapdh) as the internal control (Table S2). Relative expression was 
determined using the 2−ΔΔCt method and expressed in terms of fold- 
change (Livak and Schmittgen, 2001). 

2.9. Statistical analysis 

All the data were displayed as mean ± standard error (SEM). Sta-
tistical analysis was performed using Statistic Package for Social Science 
22.0 (SPSS, Chicago, IL, USA). A one-way analysis of variance (ANOVA) 
followed by Tukey’s test was used. Statistical significance was indicated 
as *P < 0.05 and **P < 0.01. 

3. Results 

3.1. Acute exposure test 

The 96-h LC50 value of GLA in crayfish was 1214 mg/L (Fig. 1). The 
mortality rate of the exposed crayfish showed a curve-fitting correlation 
with GLA dose. No mortality occurred in the control group, whereas 
85% of crayfish died after exposure to 2000 mg/L GLA. 

3.2. Concentration of GLA in the crayfish hepatopancreas 

GLA concentrations of 1, 10, and 100 mg/L were associated with 
crayfish hepatopancreas accumulations of 0.814 ± 0.193, 5.525 ±
0.694, and 80.022 ± 5.832 mg/kg wet mass (ww). No GLA was observed 
in the organs of the control group (See Fig. 2). 

3.3. Histological evaluation 

As shown in Figs. 3 and 1S, a normal structure with compactly ar-
ranged epithelial cells was observed in the control group. Hepatic tubule 
lumens were expanded in the 1 mg/L group (Fig. 3b). 10 mg/L GLA- 
induced hepatocyte vacuolation and increased the interstitial width 
(Fig. 3c). Degeneration of the hepatic tubule lumens and hepatocyte 
membrane lysis were observed in the 100 mg/L treatment group 
(Fig. 3d). The quantitative evaluation showed that 10 mg/L and 100 
mg/L GLA caused significant histologic injury to the microscopic 
structures of the crayfish hepatopancreas (P < 0.01) (Fig. 3B). 

3.4. Effect on oxidative stress 

ROS induction was significantly induced in the 10 and 100 mg/L 
groups versus the control group, and SOD activity was significantly 
induced. CAT activity and GSH content were reduced in the 100 mg/L 
group, but MDA content was unaffected by GLA. Positive correlations 
were found between the concentrations of ROS and GSH and the level of 
GLA in the hepatopancreas, and there was a negative correlation with 
CAT activity (Fig. 4). Thus, GLA significantly inhibits CAT and GSH 
activity, but there was no significant correlation between GLA concen-
tration and SOD or MDA activity (Table S3). 

Fig. 1. The fitted sigmoidal dose-response curve of GLA in crayfish.  
Fig. 2. Average GLA levels in the crayfish hepatopancreas after 21 days of 
treatment. Values represent means ± SEM (n = 3). 
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3.5. Total and differential count of hemocyte 

Compared to the control group, total hemocyte counts were 
decreased by 50% and 66% in the 10 and 100 mg/L groups, respectively 
(P < 0.01) (Fig. 5A). All exposed groups had a greater proportion of 
granulocytes versus the control, and the proportion of hyalinocytes and 
semi-granulocytes was significantly lower in the 10 and 100 mg/L 
groups versus the control (Fig. 5B). 

3.6. Effects on non-specific immune enzymes 

The effects of GLA on nonspecific immune enzyme expression are 
shown in Fig. 6. ACP activity was significantly inhibited in the 100 mg/L 
group versus the control. AKP and LZM activities were significantly 
inhibited in the 10 and 100 mg/L GLA groups versus the control. 
Spearman correlation analysis showed that ACP, AKP, and LZM activity 
were inversely correlated with GLA concentration in the hepatopancreas 

(Table S4). 

3.7. Transcript expression 

The transcript expression of metabolic enzyme-related genes is 
shown in Fig. 7. The results suggested that GLA significantly induced 
expression of gst, and 100 mg/L GLA significantly induced expression of 
cypb5. 

4. Discussion 

The impact of pesticides on aquatic creatures has drawn increasing 
attention (Caglayan et al., 2019; Caglayan et al., 2020). GSA is highly 
water-soluble and one of the most common pesticides. It can enter 
natural water bodies through groundwater infiltration and surface 
runoff. The 96-h LC50 provides data on the acute toxicity of GLA and a 
reference for sublethal exposure concentrations. In this study, the 96-h 

Fig. 3. Histological changes and injury scores of crayfish hepatopancreas. A: Representative images (40 × ) of the (a) control, (b) 1 mg/L, (c) 10 mg/L, and (d) 100 
mg/L groups. B: Histologic injury scores. LE, hepatic tubule lumen expansion. IW, hepatopancreatic interstitial widening. V, hepatocyte vacuolation. LD, hepatic 
tubule lumen degeneration. ML, hepatocyte membrane lysis. Values represent mean ± SEM (n = 9). Significant differences between the treatment and control are 
indicated as *P < 0.05 and **P < 0.01. 
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LC50 of GLA in crayfish was 1214.57 mg/L, compared to 8.7 mg/L in 
Oryzias dancena (Kang et al., 2014), suggesting that the crayfish is less 
sensitive to GLA than fish. Similar discrepancies in species susceptibility 
were found in studies of glyphosate, another widely used organophos-
phorus pesticide (Folmar et al., 1979; Banaee et al., 2020). Although 
GLA is considered safe at the recommended dose (Takano and Dayan, 
2020), sublethal adverse effects caused by GLA are a concern due to the 
exponential increase in the use of GLA over the past decade. The 
exposure concentration in most toxicology studies (Zhang et al., 2019a; 
Boccioni et al., 2022) is much higher than the levels found in environ-
mental samples (Masiol et al., 2018; Geng et al., 2021) and provides the 

basis for acute LC50 data and the EEC for GLA in Canada (Faber et al., 
1998). Accordingly, we chose GLA exposure concentrations based on the 
measured 96-h LC50. Though this exposure level exceeds observed 
environmental concentrations, the findings can provide mechanistic 
information useful for hazard identification and be considered impor-
tant for the general screening of GLA toxicity. GLA induces acute 
developmental immunotoxicity at an environmentally relevant con-
centration (10 μg/L) in zebrafish embryos (Xiong et al., 2019), sug-
gesting that glufosinate safety in nontarget aquatic organisms is far from 
proven, and that more studies are required. The great diversity of ar-
thropods and their widespread distribution routinely expose them to 

Fig. 4. ROS (A), MDA (C), and GSH (E) content and SOD (B) and CAT (D) activity in crayfish hepatopancreas. Values represent mean ± SEM (n = 3). Significant 
differences between treatment and control groups are indicated by *P < 0.05 and **P < 0.01. 

Fig. 5. Total hemocyte count (A) and differential hemocyte count (B). Values represent mean ± SEM (n = 3). Significant differences between treatment and control 
groups are indicated by *P < 0.05 and **P < 0.01. 
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various levels of pollutants, providing the rationale for using them as 
biological models in ecotoxicological studies. Crayfish are a rational 
surrogate for aquatic invertebrate species because of their prominent 
role in the physical and biological modification of the ecosystems they 
inhabit (Edwards et al., 2009). However, the effect of GLA exposure on 
crayfish is poorly understood despite its direct contact with GLA in 
surface water and sediments. In this study, GLA was detected in the 
hepatopancreas of exposed crayfish, showing bioaccumulation under 
experimental conditions. We also observed changes in oxidative stress 
parameters accompanied by varied degrees of hepatic tissue damage. 

In the present study, we did not measure the actual concentrations in 
exposure solutions. It was reported that GLA was quite stable in water 
samples, and less than 22% of the applied substance degraded after 100 
days (Jia et al., 2019). Consistently, the mean concentration of GLA in 
the 10 mg/L exposure solutions was 9.05 mg/L using LC-MS at 8 days 
post-exposure (Xu et al., 2022). In our study, the solution was refreshed 
every 48 h with carbon-filtered water containing the corresponding 
concentration of GLA, and thus the concentrations of GLA in exposure 
solutions were comparable to nominal concentrations. The estimated 
GLA log Kow (−3.49) showed that this compound had a low bio-
accumulation potential. Similarly, the estimated bioconcentration factor 
(BCF) values in our study were less than 1 mg/L (results not shown), 
suggesting the limited ability of GLA to accumulate in the hepatopan-
creas of crayfish. Although there is no need to pay excessive attention to 
bioaccumulation of GLA, the detection of GLA in the hepatopancreas 
indicated that the hepatotoxicity was worthy of further study. 

The hepatopancreas plays a critical role in digestion, absorption, 
excretion, and immune functions in crustaceans (Rőszer, 2014; Yang 
et al., 2015). As a crucial organ in alleviating environmental stress, the 

hepatopancreas is engaged in accumulating and detoxifying chemical 
contaminants. (Zhang et al., 2019b). It is well-known that histopatho-
logical investigations can contribute to understanding pathophysiolog-
ical processes under environmental stress (Sula et al., 2020). Our study 
showed that GLA exposure causes histological damage to the hepato-
pancreas of crayfish, making this a useful model indicator of water 
pollution (Wolf and Wheeler, 2018). The crayfish hepatopancreas 
comprises several blind tubes (Loizzi, 1971). We observed clear 
expansion of the hepatic tubules in the exposed groups, and the base-
ment membrane of the inner lumen wall was gradually expanded. 
Consistent with our results, injuries such as hepatopancreas vacuoliza-
tion, luminal dilation, and eosinophil deposition have also been 
observed in crayfish exposed to ammonia (Lin et al., 2023). The hepa-
topancreas of BPA-treated crayfish also shows comparable pathological 
characteristics, such as an increase in the number of lipid droplets in 
hepatocytes (Zhang et al., 2020). Quantitative analysis using the histo-
logic injury scoring system showed a dose-dependent negative effect of 
GLA on morphology. It should be noted that these histopathological 
changes of the hepatopancreas will not be evident in the natural aquatic 
environment due to the low concentrations of GLA. 

The oxidative stress and antioxidant capacity observed in the cray-
fish hepatopancreas supported the hypothesis that GLA-induced hep-
atoxicity occurs in aquatic organisms. One of the most common 
mechanisms of injury is oxidative stress (Tang et al., 2019). Pollutant 
exposure may increase or inhibit antioxidant enzyme activity in animals 
(Oruç and Uner, 2000). Excessive ROS generated by toxic substances 
have a significant effect on hepatopancreas damage and could directly 
indicate the degree of cellular oxidative stress (Chen et al., 2020). ROS 
may increase protein and lipids and lead to the peroxidation of mem-
brane lipids (Mercan et al., 2013). One of the products of lipid peroxi-
dation is MDA, which is another indicator of the severity of cellular 
damage (Frijhoff et al., 2015). To combat oxidative stress, organisms 
express various antioxidant enzymes and antioxidants (Sen et al., 2010). 
CAT is a biomarker of oxidative stress, converting hydrogen peroxide 
into water and oxygen (Zeinab et al., 2016). Our study showed that ROS 
and MDA content increased after exposure to GLA, while CAT activity 
was reduced. The inability of the antioxidant defense system to properly 
clear excess ROS accumulation may account for these observations 
(Adrees et al., 2015) and result in damage to the antioxidant system. 
This same result has been observed with other pesticides, as CAT activity 
in zebrafish liver significantly declined after 24-h exposure to imida-
cloprid (Vieira et al., 2018). SOD is an oxidative stress biomarker that 
affects peroxide radicals and is a precursor of intracellular ROS (Yi et al., 
2008). SOD activity in the crayfish hepatopancreas increased in the 1 
mg/L and 10 mg/L groups and decreased in the 100 mg/L group versus 
the control. This observation may be attributable to an increase in su-
peroxide anion free radicals, which would induce SOD activity, followed 

Fig. 6. Activities of ACP (A), AKP (B), and LZM (C) in crayfish hemolymph. Values represent mean ± SEM (n = 3). Significant differences between treatment and 
control groups are indicated by *P < 0.05 and **P < 0.01. 

Fig. 7. Relative transcript expression level of cypb5 and gst in the crayfish 
hepatopancreas. Values represent mean ± SEM (n = 3). Significant differences 
between treatment and control groups are indicated by *P < 0.05 and **P 
< 0.01. 
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by the conversion of superoxide anion free radicals to H2O2 with 
increasing GLA concentration, oxidizing cysteine and reducing SOD 
activity (Oruç and Uner, 2000). Through the conjugation process and 
GPx-mediated reduction, GSH protects against the harmful effects of 
pesticides (Backos et al., 2012). In this study, GSH content decreased 
with increasing GLA concentration, perhaps due to GSH induction of 
GPx (Temiz et al., 2021). It is also possible that long-term GLA exposure 
leads to H2O2 accumulation, which induces lipid peroxidation and de-
creases GSH content. These results demonstrate that GLA exposure in-
fluences oxidative stress levels in crayfish, but the mechanism by which 
each antioxidant enzyme is regulated remains to be studied. 

The hemolymph system of crustaceans acts as a fundamental mem-
brane for pathogen protection and elimination, and blood lymphocytes 
are both the immune factor and the provider of the humoral immune 
factor (Yang et al., 2021). Hemocytes perform various functions, 
including cell-to-cell communication, phagocytosis, and recognition 
(Qin et al., 2019). The number of hemocytes is correlated with immunity 
and is an early indicator of infection in aquaculture conditions (Ellis 
et al., 2011). According to a previous study, crayfish hemocytes fall into 
three main categories: HC, SGC, and GC (Ding et al., 2012; Du et al., 
2012). In this study, a negative correlation was observed between the 
exposure concentration and total hemocyte count. A reduction in crus-
tacean hemocyte count is generally considered the result of immobili-
zation in the gills (Johansson et al., 2000). In this study, the most 
significant change in hemocytes was detected in HC, with a significant 
increase in GC versus a decrease in HC and SGC. Metabolic processes 
alter granule formation, leading to an increase in the GC content of 
Rhynocoris kumarii exposed to insecticides (George and Ambrose, 2010) 
and Porcellio scaber exposed to environmentally relevant concentrations 
of polyester fibers and crumb rubber (Dolar et al., 2021). The hydrolase 
ACP and the multifunctional enzyme AKP are important in nonspecific 
immunity (Matozzo et al., 2011). LZM is a basic protein that can kill and 
remove bacteria in the blood and maintain physiological homeostasis 
(Muta and Iwanagaz, 1996). In this experiment, AKP and LZM decreased 
in a dose-dependent manner, with a significant difference between the 
control and the 10 mg/L and 100 mg/L groups. However, ACP activity 
decreased in the 1 mg/L and 10 mg/L treatment groups, perhaps because 
low-concentration GLA exposure induced metabolism and inhibited ACP 
activity at high concentrations to maintain a low level of physiological 
activity to adapt to the external environment. Reductions in ACP and 
AKP were also detected in ammonia-exposed crayfish and 
glyphosate-exposed Eriocheir sinensis (Hong et al., 2017; Lin et al., 
2023). 

Pollutant biotransformation by crustaceans involves xenobiotic- 
metabolizing phase I and phase II enzymes. Cytochrome P450s 
(CYP450s) are a family of enzymes responsible for phase I biotransfor-
mation of endogenous and exogenous compounds. Some crustaceans 
metabolize xenobiotics due to a well-developed CYP450 enzyme system 
(Martin-Diaz et al., 2008). CYPB5 is the most important transport pro-
tein in drug metabolism and is important in metabolizing xenobiotics. 
Intermediate metabolites are tightly bound by endogenous substances 
(e.g., GST, UST) via the phase II enzymes to improve the polarity of 
organic matter and promote excretion. In crustaceans, GST is a common 
phase II metabolic enzyme used as a biomarker to assess environmental 
contamination (Martín-Díaz et al., 2007). However, less is known about 
these pathways in GLA detoxification. Upregulation of both cypb5 and 
gst in the hepatopancreas of crayfish provided support for the important 
roles of these genes in GLAdetoxification. 

5. Conclusion 

This study demonstrated that exposure to GLA for 21 days might 
cause the accumulation of GLA in the hepatopancreas as well as histo-
pathological injuries and oxidative stress. Inhibition of enzymes asso-
ciated with nonspecific immunity and upregulation of xenobiotic 
detoxification-related genes were observed. Our findings provide a 

novel demonstration of the impact of GLA on non-target species and 
remind us that the specific mechanism and potential toxicity of pro-
longed GLA exposure remain worthy of investigation. 
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